Table 7. Torsion angles about C(24)-C(23) in vinbarbital and in analogous systems in other crystal structures*

Atoms in the several molecules being compared with vinbarbital are numbered according to the conventions adopted by the respective authors. The torsion angles are defined in the same way as shown in Fig.5.

Compound	Atoms	Angle
Vinbarbital	C(24)–C(23)	58·6°
Geranylamine hydro- chloride†	C(6) - C(5)	47
Harunganin‡	C(26)-C(16)	60
	C(31) - C(16)	51
Rubber§	C(4) - C(6)	48.7
	C(9)—C(1)	49.7
Oleic acid	C(8)—C(7)	48.6
	C(11) - C(12)	51.5

* This is not an exhaustive table

† Jeffrey (1945)

‡ Alden, et al. (1964)

§ Nyburg (1954)

Abrahamsson & Ryderstedt-Nahringbauer (1962)

Computer programs for the IBM 7090 used in this work were written by Drs Busing, Martin and Levy (full-matrix least-squares) and Johnson (thermal ellipsoid plot) of Oak Ridge National Laboratory, and by Dr Zalkin (Fourier) of the University of California. These programs were modified by Dr Shiono of the University of Pittsburgh, who together with Dr Chu wrote the IBM 1620 programs used in data collection and processing. One author (C. C.) is grateful for a fellowship from the Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (Brazil) and the Organization of the American States. This work was supported by a grant NB-02763 from the U.S.Public Health Service, National Institutes of Health.

References

- Abrahamsson, S. & Ryderstedt-Nahringbauer, I. (1962). Acta Cryst. 15, 1261.
- ALDEN, R. A., STOUT, G. H., KRAUT, J. & HIGH, D. F. (1964). Acta Cryst. 17, 109.
- BARTELL, L. S. & KOHL, D. A. (1963). J. Chem. Phys. 39, 3097.
- BEURSKENS, P. T. (1963). Technical Report, Crystallography Laboratory, Univ. of Pittsburgh.
- BOLTON, W. (1964). Nature, Lond. 201, 987.
- BRANDSTÄTTER-KUHNERT, M. & VLACHOPOULOS, A. (1967). Mikrochim. Acta, p. 201.
- CRAVEN, B. M., CUSATIS, C., GARTLAND, G. L. & VIZZINI, E. A. (1969). In preparation.
- CRAVEN, B. M. & MASCARENHAS, Y. (1964). Acta Cryst. 17, 407.
- CRAVEN, B. M. & VIZZINI, E. A. (1969). Acta Cryst. B25, 1991.
- CRAVEN, B. M., VIZZINI, E. A. & RODRIGUES, M. M. (1969). Acta Cryst. B25, 1978.
- CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Ed. PEPIN-SKY et al., p. 45. New York: Pergamon Press.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JEFFREY, G. A. (1945). Proc. Roy. Soc. A183, 388.
- LIDE, D. R. (1962). Tetrahedron, 17, 125.
- NYBURG, S. C. (1954). Acta Cryst. 7, 385.
- PAULING, L. (1960). *The Nature of the Chemical Bond*, 3rd ed. p. 260. Ithaca: Cornell Univ. Press.
- PAULING, L. & BROCKWAY, L. O. (1937). J. Amer. Chem. Soc. 59, 1223.
- SARACHMANN, T. N. (1963). Proceedings of the Ohio State Symposium on Molecular Spectroscopy, Columbus, Ohio.

Acta Cryst. (1969). B25, 2298

NH₄LiSO₄: A Variant of the General Tridymite Structure

BY W. A. DOLLASE

Geology Department, University of California, Los Angeles, California 90024, U.S.A.

(Received 26 December 1968)

The crystal structure of the pseudohexagonal form of NH₄LiSO₄ has been determined and refined to an *R* index of 5.0% with 364 counter-diffractometer measured reflections. The space group is P_{2_1cn} with a=5.280 (2), b=9.140 (7), c=8.786 (6) Å and Z=4. SO₄ and LiO₄ tetrahedra share corners to form a framework enclosing large cavities which contain the NH₄ groups. The tetrahedral framework differs from that of KLiSO₄ (a tridymite derivative structure) by inversion of two tetrahedra in each of the six-membered rings of tetrahedra. The inversion of these tetrahedra leads to the formation of chains of four-membered rings of tetrahedra and modification of the shape of the large cavity, relative to the KLiSO₄ structure.

Introduction

Ammonium lithium sulfate, NH_4LiSO_4 , is reported (Wyrouboff, 1890), to be polymorphous. The form crystallizing from an aqueous solution above room

temperature is orthohombic, pseudohexagonal, and based on its morphological cell and pseudosymmetry is evidently related to the hexagonal compounds $KLiSO_4$ and $RbLiSO_4$. The crystal structure of $KLiSO_4$ (Bradley, 1925) shows that it is a derivative structure of tridymite, SiO_2 , with LiO_4 and SO_4 tetrahedra arranged in a tridymite-like framework, and K atoms occupying the large cavities of the framework (this latter site is, of course, unoccupied in tridymite itself).

The present investigation was undertaken to determine the relationship of the pseudohexagonal form of NH_4LiSO_4 to the KLiSO₄ structure, *i. e.* its relationship to the general tridymite structure – in order to further understanding of this important structure type.

Crystal data and data collection

 NH_4LiSO_4 was crystallized at about 25°C from an aqueous solution prepared from equimolar amounts of reagent grade (NH_4)₂SO₄ and Li₂SO₄. H₂O dissolved in distilled water. The pseudohexagonal plates that form are almost invariably sector twinned, the sectors being related by a 120° rotation about the twin axis, which is coincident with the morphologic pseudohexagonal axis. Small crystal fragments were broken from individual sectors in order to obtain untwinned material.

The diffraction symmetry determined from precession photographs is *mmmP-cn*, which allows both space groups *Pmcn* and *P*2₁*cn*. The cell dimensions, measured on precession photographs on which a pattern from an NaF crystal was superimposed, are a = 5.280(2), b = 9.140(7) and c = 8.786(6) Å, using the value of 4.6342 Å for the NaF cell edge (Swanson & Tatge, 1953). The estimated standard deviations, referring to the last digit, are given in parentheses. The cell-edge ratios then are 1:1.7311:1.6640, compared with values of 1:1.7303:1.6679 previously determined from the morphology (Wyrouboff, 1890). As expected, the cell dimensions are closely related to those of hexagonal

KLiSO₄ with $a_0 \simeq a_h$, $b_0 \simeq \sqrt{3}a_h$ and $c_0 \simeq c_h$. Assuming four formula units per unit cell, in analogy to the KLiSO₄ structure, the calculated density is 1.896 g.cm⁻³ in agreement with the value of 1.889 measured by Wyroboff (1890).

Although the cells are closely related, the diffraction symbol shows that NH_4LiSO_4 cannot be a true derivative structure of tridymite. This follows from the safe assumption that the SO₄ and LiO₄ tetrahedra, if linked in the structure, must alternate.* Such alternation of tetrahedra in a tridymite-like arrangement leads to all SO₄ tetrahedra pointing one way along the *c* axis and all LiO₄ tetrahedra pointing in the opposite direction (as found in KLiSO₄). However, the presence of an *n* glide plane normal to **c** in NH₄LiSO₄ is obviously not consistent with this arrangement.

A crystal fragment of approximately $0.15 \times 0.16 \times 0.21$ mm was selected for intensity measurements. These were made on an equi-inclination type, singlecrystal diffractometer with Zr-filtered Mo K α radiation. The measurements were corrected for background and Lp factors but not for absorption, which was considered negligible ($\mu R = 0.06$). A total of 364 independent reflections were measured, consisting of all available data up to ($\sin \theta$)/ $\lambda \sim 0.6$ Å⁻¹. Three of these reflections were considered to be not significantly above background and assigned zero intensity.

Along with the intensity measurements a check was made on the possible extent of twinning in the particular grain chosen. The very strong 121 reflection was

^{*} Non-alternation would give polysulphate groups which would have hydrolyzed in the aqueous solution from which the compound crystallized.

I	al	ole	1.	01	bserved	and	cald	cula	ted	st	ruc	tur	e j	faci	tor	S
---	----	-----	----	----	---------	-----	------	------	-----	----	-----	-----	-----	------	-----	---

Values of 100 Fo and 100 Fc are listed.

к	L	FOB5	FCAL	к	ι	FOBs	FC 11.	к	L	FOBS	FCAL	К	L	FUBS	FCAL	ì	ı.	FORS	FCAL	к	L	FORS	FCAL	к	L	FORS	FCAL	к	L	FOBS	FCAL
	1	н = о				н = о				1 - 1			F	- 1				1! - 2				H - 3			н	- 4				н - 5	
2	0	336)	3900	1	• >	1510	1557	6	2	1525	1406	-1	ъ	3.93	500	;	4	7.52	640	2	ż	1.10	905	0	0	473-1	4763	1	U.	531	410
4	0	747	327	2	9	1361	1245	7	2	2.725	2158	ذ	8	1215	1223	ő	1	167	174	3	2	2527	2432	2		2698	2727	з	0	3362	3381
0	5	4920	2214	3	U,	3601	3312		2	4.1	232	1	- 2	916	307	. <u>+</u>	J	3303	3335	4	2	900	8.71	1	12	2190	1744	2		552	371
10	8	2 3 9 7	2314	1		315	537		1	24.07	2434	÷.	5	1.5	4.15			1015	1 /32	3	1	2598	2020			2000	2810	<u>.</u>	2	1241	1305
12	ŏ	741	711		ri .	1156	563	2	3	10.12	1053	5		117			3	5.00	540	2	5	40.5	4 32	1		936	422		-7	2084	2173
2	ï	3625	5814	7	ŏ	1422	1401	3	3	226	251						ŭ	5125	3124		ž	432	434	1 i	í	1339	1235	2	í	1390	1326
з	1	1140	520	8	6	158	020	-4	3	3342	3329			• 2		Ū.	÷.	321	345	i	3	1356	1314	2	i	2014	2748	3	ĩ	803	910
4	1	2027	2931	1	7	1961	1344	э	з	1150	1058		0	7318	77.7	2	J	1110	1433	2	3	162 J	1507	3	1	313	205	5	i	450	407
5	1	3 5 2 2	3311	2	7	1380	1383	Ċ,	3	1025	1092	2		2., 3.1	1605	<u>ہ</u>	د	741	2-56	3	3	434	434	4	1	3412	3418	5	1	1645	1653
6	1	1293	1.397	3	2	405	5.72	- 7	3	1 +1 5	100.1	4	0	3-34	3-(1.)		v	5.05	31	4	3	2400	24 .4	ن	1	1.77	1487	0	2	1288	1294
	1	308	124	-	1	1.103	1129		3	1143	1985	0	. 2	36-17	3715	1	••	170)	172)	÷	3	16 /3	16.75	6	1	323	579	1	2	704	04.7
3	1	1.7.50	31172		-	1111	1-2-1	9	- 2	521	210	- <u>1</u>	1	39.0	1 2 6 0	4		300	1091	2	3	-539	670	:	1	303	342	2	2	465	3.33
10	î.	1434	1432		÷	10:17	1534	1	-	330	1.13	12		1.52	16.4			3271	33.1		<u>د</u>	1151	1100	- X	- 5	1307	1200	3	2	610	198.9
í	2	1253	1172	i	ò	د د د	22.	÷	i	1.1.1	1.49	- 1	- i	2013	2		6	124	1215	~ ~	4	174 1	1616	2	÷	2660	2745	1	2	519	435
2	2	1566	J2 H	2	5	533	796	- 3	i.	26.15	2010	2	i	2955	2.23		5	1.03	255	i	4	282	56.9	- 5	2	1359	1314	ĩ	3	13 32	1426
3	2	29.10	2.100	3	ъ	1213	12.15	-1	1	-75	852	3	1	762	712			120	Jn 2	2	4	1.04	1	4	2	1456	1522	2	3	1362	1303
4	2	7 17	661	4	5	1.558	1657	J	1	1155	1471	4	1	2215	2172	1		2373	2555	3	4	27.0	260-5	ċ	2	5.)1	1 ۋن	3	з	738	763
ر	2	516	4 / 0	ذ	ø	101	131		1	1915	1460	2	1	2572	2423	2	7	17.57	2011	-4	4	-510	631	6	2	1-23	1750	4	3	156.)	16.75
0	2	3.03	2045	6	1	1242	1331	7	1	14.50	131.		1		115	1	- 3	2,3	152	د	3	12/3	1313	7	- 2	573	524		4	1425	13 33
1	2	945	824	1		04.7	05,	8	4	542	3410	1	1	185	222	-1	- 1	12.1.	1613	2	1	1575	1586		3	1.577	1608	1	4	476	338
3	2	934	1013	1	- 5	316	342			2303	22.1	- 3	- 1	2140		2	- (2.11	1.5	- 1	- 2	218	231		5	1.24.5	1001	- 2	2	1245	491
10	2	00	1 19	4	- ú	1020	1595	2		3507	3619		2	33.3	3653			234.5	24.2	2	3	3145	3163		1	2314	2325	1	2	1004	1084
i	3	2139	2151					3	3	268	199	1	2	1372	1232	1		ذ ک	312	3	5	013	61.	- 2	- 3	1137	1655	•			1.004
2	3	2913	1393					-1	э	27 13	2545	2	2	4.5	333	2	5	16.02	1155	-1	Ĵ	21.11	2		3	533	615				
3	3	10:18	6 <u>5</u> 7			n - 1		5	ڻ	قذ ظ	810	3	2	2423	22.00		~	1215	1317	ړ	ċ	120	1.41		4	1.75	1325			н = о	
-4	3	721	795	1	0	3371	43.5	- G	5	00	162	4	2	2440	2471	1		115 -	1190	÷	5	υuà	.2.	1	-4	- D2 J	5.2			2305	23-51
ş	3	1815	1833	3		6.36	7048	7	ذ	749	745	ن ا	2	724	721	1	J	5-13	105		د	د د ب	ر (ز:	2	4	1227	1275	2	2	1178	1127
5	3	610	360	2	- 2	2613	2333	3	3	2213	2295	2	2	21/0	2037	2	э	:142	1191	?	5	3244	3215	3	4	1429	1450		2	1107	1066
	3	20/0	214 5	- 6	0	2614	27/12	- ï	6	30.44	5377	÷.	1	4 8 8	375					1		1125	539	1	1	551	927	••	.,	1528	1537
	3	337	241	- 1í	ŏ	967	1020	2	6	2101	2016	ň	2	813	924		1	(- 3 -		1		7 14	740		1	211	125				
1	4	281	171	1	1	5388	5671	3	6	2622	2637	1	3	2343	2511	1	J	2000	2550		5	12.04	1315	í	5	2 11	2047			ii = 7	
2	4	12∋2	1332	2	1	4637	4253	4	6	1873	1909	2	з	418	471	3	- 9	6104	5591	د	ز	751	773	2	J	1221	1276	1	2	60 /	515
3	4	1794	1894	3	1	452	47.	ა	6	360	1023	.3	3	343	327	5	4	2.5 1	2221		ú	1712	1.50 /	3	÷	291	222	5		21.30	2110
4	4	1538	1418	-1	1	1003	948		U,	24 52	24 51	-4	3	1363	1319	- 7		1.52	130	1	1	1034	1673		5	1423	14.)				
2	1	821	789	2	1	1392	10.53	1	2	761	791	2	3	1278	1206			1017	1012	2	7	1672	1600	ر	د ا	2273	2320				
2	2	1070	1000	2	-	2761	24/1	2	4	1661	1239		3	1007	2162	11	- ?	330	10 1	3	- 2	207	272		11	1293	1226				
	2	1079	1124	. :		1700	20.91	- 5	4	1001	1396		2	2151	2103		- 1	2343	2112	,	- 2	1927	1965	1	2	10.04	1104				
9	4	1 143	1537	9	- 1	7:00	76.2	.1	÷	2344	2338	3	ž	4.18	388	2	- ;	237	2317	~	- 1	1000	117	2		216-					
ĩ	5	3140	3039	10	-î	291	301	5	7	1318	1312	Ű	4	2831	2712		- i	761	30	1	~	1346	1932	3	- 3	201	205				
2	ŝ	2350	2246	- ô	2	2975	2885	6	7	711	762	ĩ	4	703	627	5	- î	200	2.75	ź	ň	6 1	644	1	- 7	1421	1412				
3	5	500	600	i	2	4925	4501	7	7	760	649	2	4	1878	1328	6	ī	476	4.0	5	8	1.0	113.	2	Ť	013	669				
4	5	835	736	2	2	1812	173 ś	Ų	ы	952	893	3	4	1871	1898	7	1	2:11	2:91												
5	5	4103	4181	3	2	3909	3625	1	8	1723	1717	4	4	1180	1150	6	1	1153	12.0												
6	5	184	098	4	2	1421	1373	2	8	673	823	5	4	1110	1144	5	2	2143	21.12												
8	5	1049	1109	5	2	2624	2521	з	ы	1935	2068	6	-1	1194	1115	1	2	2741	2678												

measured at the positions where this reflection would occur if the grain were twinned as described above; no measurable intensity was recorded. It can be estimated then that no more than 0.1% of the volume of the grain could be present in twinned orientation.

Structure determination

A three-dimensional Patterson function was calculated and the four sulfur atoms present in the unit cell were identified as belonging to a single position. This position could either be the general one in $P2_1cn$ or the position on the mirror plane in *Pmcn*. With the signs for F calculated from the y and z coordinates of the sulfur atoms, an electron-density projection onto the centric (100) plane was computed. The oxygen atoms of the sulphate group were found; from their locations it could be determined that the SO₄ tetrahedron is not lying on a mirror plane, thereby restricting the space group to $P2_1cn$. From assumed bond lengths the x coordinates of the oxygen atoms were estimated and used in first calculating three-dimensional structure factors and subsequently a three-dimensional electron-density map. This map revealed the locations of the N and Li atoms. At this point full-matrix, least-squares refinement was instituted.

weights were used throughout, the quantity minimized being $\Sigma(|F_o| - |F_c|)^2$. On the basis of the strong anisotropy indicated in a late stage difference-Fourier synthesis, anisotropic thermal parameters of the oxygen atoms were included in the refinement. The final *R* index, for all reflections, is 5.0%. Observed and calculated structure factors are listed in Table 1. The positional and thermal parameters are listed in Table 2. The dimensions and orientations of the thermal vibration ellipsoids, derived from the thermal parameters, are also listed.

The hydrogen atoms were not located. A difference map computed after the refinement showed maximum anomalies of ~0.3 e.Å⁻³. As these irregular maxima were located near the nitrogen atom, they may represent hydrogen atoms; however attempts at including trial hydrogen positions in the model improved neither the overall agreement nor the appearance of the difference map and refinement tended to shift the atoms to positions which gave highly improbable N–H distances. It must be concluded that either the hydrogen atoms are spatially disordered or, much more likely, the present data are insufficiently accurate to reveal their locations.

In the calculations scattering curves for neutral atoms were taken from the tabulation by Ibers (1962). Equal

NLISOOOO

In the structure of NH_4LiSO_4 (Fig. 1), the sulfur and lithium atoms are, as expected, tetrahedrally coordi-

Description of the structure

Table 2. NH_4LiSO_4	positional a	and thermal	parameters
-----------------------	--------------	-------------	------------

	Estimated	standard deviations	in parentheses.	
	x	У	Z	В
H4	0.4912 (25)	0.2137 (7)	0.4999 (7)	1.8 (1) Å ²
	0.0084 (73)	0.4117 (14)	0.3234 (15)	1.5 (2)
	0†	0.0836 (2)	0.2030 (2)	0·90 (4)
(1)	0.0003 (33)	0.0961 (10)	0.0384 (7)	*
(2)	0.3323 (15)	0.4631 (7)	0·2496 (9)	*
(3)	0.2585 (15)	0.0537 (7)	0.2565 (9)	*
(4)	0.9059 (16)	0.2191 (7)	0.2705 (11)	*

* Anisotropic temperature factors of the form $(b_{11}h^2 + \ldots 2b_{12}hk + \ldots)$. † Fixed, to define x axis origin.

	b_{11}	b22	b33	$2b_{12}$	$2b_{13}$	$2b_{23}$
O(1)	0.028 (3)	0.030 (2)	0.003(1) - 0	0.004 (4)	0.001 (3)	0.003(1)
O(2)	0.016 (3)	0.006 (1)	0.011(1) - (0.005 (1)	0.006(2)	-0.004(1)
O(3)	0.009 (2)	0.007 (1)	0.009 (1) (0.002 (1)	-0.004 (1)	-0.004(1)
O(4)	0.019 (3)	0.004 (1)	0.021 (2)	D•001 (1)	0·002 (2́)	-0·004 (1)
	Ellipsoid	R.m.s.				
	axis	amplitude	φa‡		φb	φc
O(1)	1	0·20 (1) Å	. 9 (12) ^o	° 86	5 (6)°	82 (13)°
	2	0.36 (1)	95 (7)	8	3 (4)	84 (2)
	3	0.09 (2)	97 (13)	97	7 (2)	10 (9)
O(2)	· 1	0.11 (2)	44 (21)	40	5 (20)	88 (20)
	2	0.13 (2)	122 (24)	59	9 (24)	48 (̀4)
	3	0.25 (1)	64 (4)	120) (4)	42 (4)
O(3)	1	0.10 (2)	23 (15)	87	7 (19)	67 (13)
	2	0.13 (2)	105 (21)	34	5 (6)	60 (11)
	3	0.23 (1)	107 (5)	125	5 (5)	40 (5)
O(4)	1	0.17 (1)	16 (10)	74	4 (10)	90 (4)
	2	0.10 (2)	106 (10)	21	l (8)	77 (3)
	3	0.29 (1)	86 (4)	103	3 (3)	13 (3)

 \ddagger The φ 's are the angles between the ellipsoid axes and the cell axes.

nated, with each SO₄ tetrahedron sharing all of its corners with LiO₄ tetrahedra and vice versa. As seen in the Figure, the NH₄LiSO₄ tetrahedral framework and the tridymite framework are topologically the same in the *c*-axis projection. The differences between the structures stem from the fact that, in each six-membered ring of tetrahedra in NH₄LiSO₄, three *adjacent* tetrahedra point 'up' the *c* axis while the other three, forming the other half of the ring, point 'down'. In contrast, in the tridymite-like arrangement, adjacent tetrahedra point in opposite directions along the *c* axis. Thus the sequence of 'up' and 'down' tetrahedra in tridymite derivative structures is UDUDUD whereas in NH₄LiSO₄ the sequence is UUUDDD.

The successive layers of tetrahedral rings are almost exactly eclipsed as viewed along the c axis. The individual layers are joined parallel to the c axis by connecting tetrahedra in one layer that point down with those in the next lower layer that point up, and so forth. One consequence of neighboring tetrahedra pointing the same way is the formation of four-membered rings of tetrahedra. As seen in the Figure, these rings form a dense double-chain of tetrahedra running along the *a* axis. In a tridymite-like arrangement, only six-membered rings are formed in this orientation.

The NH_4 groups lie approximately at the centers of the large cavities in the tetrahedral framework. The group is eightfold coordinated with six oxygen atoms forming the corners of a truncated trigonal prism and two equatorial oxygen atoms lying outside two of the prism faces. Each of the oxygen atoms in the structure is coordinated to one Li, one S and two NH_4 groups. Interatomic distances and angles are listed in Table 3.

If the NH₄LiSO₄ structure were transformed to a tridymite-like arrangement by inversion of some of the tetrahedra, the NH₄–O bond lengths would remain essentially the same but the coordination number of the NH₄ group would increase to nine and O(1) would become five-coordinated. This, however, assumes that the S–O(1)–Li bond would remain nearly linear. In some of the actual tridymite derivative structures, such as kalsilite KA1SiO₄ (Perrotta & Smith, 1965), which is isostructural with KLiSO₄ but more accurately known, and nepheline Na₃KAl₄Si₄O₁₆ (Hahn & Buerger, 1955), the analogous T–O–T' bond is bent away from a linear arrangement, reducing the respective coordination

Fig.1. NH₄LiSO₄ polyhedral linkage. (a) View along the c axis. Only one tetrahedral layer is shown. In successive layers, which are almost exactly eclipsed in this view, a LiO₄ tetrahedron pointing up is replaced by a SO₄ tetrahedron pointing down, etc. Fractional coordinates (z) of labeled atoms are NH₄ (heavy circle) 0.50 and (light circle) 0.00, O(1) 0.51, O(2) 0.25, O(2') 0.75, O(3) 0.26, O(3') 0.76, O(4) 0.27, O(4') 0.77, Li 0.32, S 0.30. (b) b-axis view of 'double chain' of tetrahedra.

	. Dona iengins	unu ungrei	,
	Uncorrected		Corrected*
Bonds	length	E.s.d.	length
S-O(1)	1•450 Å	0∙007 Å	1•496 Å
-O(2)	1.474	0.008	1.493
-O(3)	1.469	0.008	1.490
-O(4)	1.460	0.007	1.489
Li - O(1)	1.891	0.105	
-O(2)	1.889	0.036	
-O(3)	1.979	0.028	
-O(4)	1.899	0.018	
$NH_4-O(1)$	3.139	0.019	
-O(1')	3.219	0.019	
-O(2)	3.277	0.010	
-O(2')	2.851	0.011	
-O(3)	2.867	0.011	
-O(3')	3.333	0.011	
-O(4)	2.976	0.014	
-O(4')	3.290	0.013	

Table 3. Bond lengths and angles

* Assuming oxygen atoms 'riding' on sulfur atoms.

Bonds	Angle	E.s.d.	
O(1)-S-O(2)	110.0°	0.7°	
O(1) - S - O(3)	109-4	0.8	
O(1) - S - O(4)	109.8	0.6	
O(2)-S-O(3)	109.2	0.2	
O(2) - S - O(4)	108.3	0.2	
O(3) - S - O(4)	110.1	0.2	
O(1)-Li-O(2)	111.9	2.0	
O(1)-Li-O(3)	111.3	2.0	
O(1)-Li-O(4)	101.7	1.3	
O(2)-Li-O(3)	108.6	1.9	
O(2)-Li-O(4)	113.9	2.0	
O(3) - Li - O(4)	109.4	1.3	
S-O(1)-Li	173-2	1.7	
S = O(2) - Li	129.3	0.7	
S = O(3) - Li	128.9	0.7	
S-0(4)-Li	142.0	1.3	

numbers to eight and four. The bending of the T-O-T'bond angle could be interpreted as an attempt by this oxygen atom to retain fourfold or smaller coordination. In NH₄LiSO₄ and in orthorhombic high tridymite (Dollase, 1967) such bending is unnecessary to retain fourfold-or-less coordination, and the respective T-O-T'angles are $173.2 \pm 1.7^{\circ}$ and $178.7 \pm 0.9^{\circ}$.

It is not evident why NH₄LiSO₄ adopts this structure rather than forming a tridymite-derivative structure. Perhaps this is only related to a favorable disposition of N-H...O bonds. There does not, however, seem to be any reason why this structure could not form with spherically symmetric atoms such as Rb in the cavities. Therefore the possibility of NH4LiSO4-like tetrahedral arrangements should be considered for some of the numerous compounds that appear to be tridymite-derivative structures on the basis of their cell dimensions and pseudosymmetry (see, e.g. Deer, Howie & Zussman, 1963). Even more generally, such a unit cell and (pseudo) symmetry relationship should be considered as only suggesting (pseudo) hexagonal layers of six-membered tetrahedral rings with successive layers joined by those tetrahedra pointing up being connected to tetrahedra in the next layer that point down. These structural aspects would give rise to a tridymite-like cell. The disposition of the tetrahedra in any one of these six-membered rings is not fixed by these relationships. In such six-membered rings there are only eight topologically different arrangements of tetrahedra that point either up or down. Any one of these should be considered possible in unknown structures. Besides the two demonstrated in this paper, the only other arrangement with three tetrahedra pointing in the same direction, namely *UUDDUD*, has, in fact, been proposed (Kunze, 1954) to exist in orthorhombic KAISiO₄, although the structure has not been determined. Another of the eight possibilities, the arrangement with all tetrahedra in a ring pointing in the same direction (*UUUUUU*), exists in hexagonal CaAl₂Si₂O₈ and related structures (Takéuchi & Donnay, 1959).

Thermal motion and bond-length corrections

The observed orientations of the thermal ellipsoids (long axes roughly normal to the S–O bonds and short axes roughly parallel to the S–O bonds) are consistent with a rigid-body librational motion of the sulfate tetrahedra. Values of the S–O bond lengths corrected for a model of oxygen atoms 'riding on' sulfur atoms are included in the Table. As the magnitude of the vibration is large, the corrections are significantly larger than the formal standard deviations in the bond lengths. The vibrational ellipsoids do not indicate that such a correlated-motion model is applicable in the case of the weaker-bonded LiO₄ and NH₄O₈ polyhedra.

The vibrational ellipsoid of the O(1) atom deserves a further comment. The smallest vibration amplitude is approximately in the *c*-axis direction, along the S-O(1) bond. Vibration in the *ab* plane, however, is also very anisotropic and is apparently influenced by the near non-bonded neighbors in the four-member tetrahedral rings such that vibration of O(1) normal to the approximate 'plane' of the chain-forming rings is almost twice that parallel to the chain direction (see Fig. 1).

This research was supported by a grant from the National Science Foundation. The computations were carried out at the UCLA Campus Computing Network.

References

BRADLEY, A. J. (1925). Phil. Mag. 49, 1225.

- DEER, W. A., HOWIE, R. A. & ZUSSMAN, J. (1963). Rock-Forming Minerals, Vol. IV, p. 232. New York: John Wiley. DOLLASE, W. A. (1967). Acta Cryst. 23, 617.
- HAHN, T. & BUERGER, M. J. (1955). Z. Kristallogr. 106, 308.
- IBERS, J. A. (1962). International Tables for X-ray Crystallography, Vol.III, Table 3.3.1A. Birmingham: Kynoch
- Press. KUNZE, G. (1954). Heidelberg. Beitr. Min. 4, 99.
- PERROTTA, A. J. & SMITH, J. V. (1965). Miner. Mag. 35, 588.
- SWANSON, H. E. & TATGE, E. (1953). Nat. Bur. Stands. Circ. 539, Vol. I, p. 63.
- TAKÉUCHI, Ý. & DONNAY, G. (1959). Acta Cryst. 12, 465. WYROUBOFF, M. G. (1890). Bull. Soc. franç. Minér. 13, 216.